Block moves downward, so friction acts upward.
Along incline: \( F \sin 30^\circ + mg \sin 30^\circ - f_s = 0 \).
Normal: \( N = mg \cos 30^\circ + F \cos 30^\circ \).
\( mg \sin 30^\circ = 4 \times 10 \times 0.5 = 20 \, \text{N} \), \( mg \cos 30^\circ = 40 \times 0.866 =
34.64 \, \text{N} \).
\( N = 34.64 + F \times 0.866 \), \( f_s = 0.3 (34.64 + 0.866F) \).
Substitute: \( F \times 0.5 + 20 - 0.3 (34.64 + 0.866F) = 0 \).
\( 0.5F + 20 - 10.392 - 0.2598F = 0 \Rightarrow 0.2402F + 9.608 = 0 \).
\( 0.2402F = -9.608 \Rightarrow F \approx -40 \) (impossible, adjust: \( F \sin 30^\circ = f_s - mg \sin
30^\circ \)).
Correct: \( f_s = 0.3 \times 34.64 = 10.392 \), \( F \times 0.5 = 10.392 - 20 \Rightarrow F = -19.2 \)
(retry).
\( 0.5F = 20 - 10.392 \Rightarrow 0.5F = 9.608 \Rightarrow F \approx 19.2 \, \text{N} \).