A brass block of dimensions \( 0.4 \, \text{m} \times 0.3 \, \text{m} \times 0.1 \,
\text{m} \) is subjected to a shearing force of \( 3 \times 10^4 \, \text{N} \). If the
shear modulus of brass is \( 3.6 \times 10^{10} \, \text{N/m}^2 \), what is the
displacement of the top face?
Shear modulus: \( G = \frac{F / A}{\Delta x / L} \).
Rearrange: \( \Delta x = \frac{F L}{A G} \).
Area: \( A = 0.4 \times 0.3 = 0.12 \, \text{m}^2 \), \( L = 0.1 \, \text{m} \).
Substitute: \( \Delta x = \frac{3 \times 10^4 \times 0.1}{0.12 \times 3.6 \times 10^{10}} =
\frac{3000}{4.32 \times 10^9} \approx 6.94 \times 10^{-7} \, \text{m} \).
\( 6 \times 10^{-7} \, \text{m} \)
\( 7.5 \times 10^{-7} \, \text{m} \)
\( 6.94 \times 10^{-7} \, \text{m} \)
\( 5 \times 10^{-7} \, \text{m} \)