Ray Optics And Optical Instruments Chapter-Wise Test 1

Correct answer Carries: 4.

Wrong Answer Carries: -1.

A convex lens (\( f = 20 \, \text{cm} \)) and a concave lens (\( f = 40 \, \text{cm} \)) are in contact. What is the effective focal length?

\( f_1 = 20 \, \text{cm} \), \( f_2 = -40 \, \text{cm} \).

\( \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{20} + \frac{1}{-40} = \frac{2 - 1}{40} = \frac{1}{40} \).

\( f = 40 \, \text{cm} \) (converging system).

30 cm
35 cm
40 cm
45 cm
3

What is the primary reason a concave lens cannot form a real image?

A concave lens diverges light rays, preventing them from converging to a point on the opposite side. The rays appear to diverge from a virtual focal point on the same side as the object, resulting in a virtual image that cannot be projected, regardless of object position.

It has a positive focal length
It reflects light instead of refracting
It diverges light rays
It absorbs most incident light
3

A ray of light passes from air into water (\( n = 1.33 \)) at an angle of incidence of \( 45^\circ \). What is the angle of refraction?

Snell’s law: \( n_1 \sin i = n_2 \sin r \).

Air (\( n_1 = 1 \)), water (\( n_2 = 1.33 \)), \( i = 45^\circ \).

\( 1 \times \sin 45^\circ = 1.33 \times \sin r \).

\( \sin 45^\circ = \frac{1}{\sqrt{2}} \approx 0.707 \Rightarrow 0.707 = 1.33 \sin r \).

\( \sin r = \frac{0.707}{1.33} \approx 0.532 \Rightarrow r = \sin^{-1}(0.532) \approx 32^\circ \).

32°
35°
40°
45°
1

A double convex lens has radii of curvature \( 20 \, \text{cm} \) each and refractive index \( 1.5 \). What is its focal length?

Lens maker’s formula: \( \frac{1}{f} = (n - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \).

\( n = 1.5 \), \( R_1 = 20 \, \text{cm} \), \( R_2 = -20 \, \text{cm} \) (sign convention).

\( \frac{1}{f} = (1.5 - 1) \left( \frac{1}{20} - \frac{1}{-20} \right) = 0.5 \left( \frac{1}{20} + \frac{1}{20} \right) = 0.5 \times \frac{2}{20} = \frac{1}{20} \).

\( f = 20 \, \text{cm} \).

10 cm
20 cm
30 cm
40 cm
2

A telescope has an objective of focal length \( 150 \, \text{cm} \) and an eyepiece of focal length \( 5 \, \text{cm} \). What is its magnifying power?

Magnifying power: \( m = \frac{f_o}{f_e} \).

\( f_o = 150 \, \text{cm} \), \( f_e = 5 \, \text{cm} \).

\( m = \frac{150}{5} = 30 \).

20
25
30
35
3

A ray of light is incident at \( 60^\circ \) on a glass-air interface (refractive index of glass = 1.5). What is the angle of refraction in air?

Using Snell’s law: \( n_1 \sin i = n_2 \sin r \).

Glass (\( n_1 = 1.5 \)), air (\( n_2 = 1 \)), \( i = 60^\circ \).

\( 1.5 \sin 60^\circ = 1 \sin r \).

\( \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.866 \Rightarrow 1.5 \times 0.866 = 1.299 \).

\( \sin r = 1.299 > 1 \), which is impossible, so total internal reflection occurs.

Critical angle: \( \sin i_c = \frac{1}{1.5} = 0.667 \Rightarrow i_c \approx 41.8^\circ \). Since \( 60^\circ > 41.8^\circ \), no refraction occurs.

However, question assumes refraction; likely a misinterpretation. Correct options assume refraction possible.

Testing options, closest realistic refraction angle based on context: \( \sin r = \frac{1.5 \times 0.866}{1} \) is invalid, so adjust context.

Assuming air to glass (reverse), \( 1 \sin 60^\circ = 1.5 \sin r \Rightarrow r = \sin^{-1}(0.577) \approx 35^\circ \).

30°
35°
40°
No refraction
4

A prism of angle \( 45^\circ \) and refractive index \( 1.6 \) produces what minimum deviation?

For a thin prism: \( D_m = (n - 1) A \).

\( n = 1.6 \), \( A = 45^\circ \).

\( D_m = (1.6 - 1) \times 45 = 0.6 \times 45 = 27^\circ \).

20°
25°
30°
27°
4

A ray of light passes from air (\( n = 1 \)) to glass (\( n = 1.5 \)) at an angle of incidence of \( 45^\circ \). What is the angle of refraction?

Snell’s law: \( n_1 \sin i = n_2 \sin r \).

Air (\( n_1 = 1 \)), glass (\( n_2 = 1.5 \)), \( i = 45^\circ \).

\( 1 \times \sin 45^\circ = 1.5 \times \sin r \).

\( \sin 45^\circ = 0.707 \Rightarrow 0.707 = 1.5 \sin r \Rightarrow \sin r = \frac{0.707}{1.5} \approx 0.471 \).

\( r = \sin^{-1}(0.471) \approx 28.1^\circ \).

28°
30°
35°
40°
1

An object is placed \( 8 \, \text{cm} \) from a convex mirror of radius of curvature \( 24 \, \text{cm} \). What is the image distance?

Focal length: \( f = \frac{R}{2} = \frac{24}{2} = 12 \, \text{cm} \).

Object distance: \( u = -8 \, \text{cm} \).

Mirror equation: \( \frac{1}{v} + \frac{1}{-8} = \frac{1}{12} \Rightarrow \frac{1}{v} = \frac{1}{12} + \frac{1}{8} = \frac{2 + 3}{24} = \frac{5}{24} \).

\( v = \frac{24}{5} = 4.8 \, \text{cm} \) (virtual image).

4 cm
4.5 cm
5 cm
4.8 cm
4

A prism of refracting angle \( 50^\circ \) has a minimum deviation of \( 25^\circ \). What is the refractive index?

Refractive index: \( n = \frac{\sin \left( \frac{A + D_m}{2} \right)}{\sin \left( \frac{A}{2} \right)} \).

\( A = 50^\circ \), \( D_m = 25^\circ \).

\( n = \frac{\sin \left( \frac{50 + 25}{2} \right)}{\sin \left( \frac{50}{2} \right)} = \frac{\sin 37.5^\circ}{\sin 25^\circ} \).

\( \sin 37.5^\circ \approx 0.609 \), \( \sin 25^\circ \approx 0.423 \).

\( n = \frac{0.609}{0.423} \approx 1.44 \).

1.38
1.44
1.50
1.60
2

Performance Summary

Score:

Category Details
Total Attempts:
Total Skipped:
Total Wrong Answers:
Total Correct Answers:
Time Taken:
Average Time Taken per Question:
Accuracy:
0
error: Content is protected !!